СВЧ ламинат на основе фторопласта (Dk 10.2)

РТFE/тканое стекловолокно/керамический высокопроизводительный ламинат с высокой диэлектрической постоянной для СВЧ печатных плат

Тканый армированный стекловолокном керамический композитный материал на основе РТFE, используемый в качестве подложки печатной платы. Материал был разработан для обеспечения низких диэлектрических потерь, низких вносимых потерь и механической прочности изделий с диэлектрической постоянной 10,2. Более высокая диэлектрическая проницаемость материала обеспечивает различную степень миниатюризации схемы, особенно для микроволновых делителей мощности, сумматоров мощности, усилителей, фильтров, соединителей и других компонентов, в которых используются линии с низким импедансом. Диэлектрическая проницаемость 10,2 обеспечивает миниатюризацию, необходимую для антенн малой площади (GPS, спутниковое радио DAB, портативные считыватели RFID и т. д.).

Материал представляет собой «мягкую подложку» и относительно нечувствителен к вибрациям. Материал совместим с обработкой, используемой для стандартных подложек печатных плат на основе РТГЕ. Кроме того, низкое тепловое расширение по оси Z повысит надежность сквозных отверстий по сравнению с типичными ламинатами на основе РТГЕ. Низкое тепловое расширение X-Y обеспечивает превосходное соответствие керамическим держателям чипов и другим керамическим компонентам.

- Стабильная и высокая диэлектрическая проницаемость (Dk 10.2)
- Низкие диэлектрические потери (0,0021)
- Самые низкие вносимые потери
- Отличная стабильность размеров
- Превосходная механическая стабильность
- Высокая теплопроводность
- Низкий КТР по оси Z
- Низкое поглощение влаги

Преимущества:

- Миниатюризация разводки
- В некоторых случаях заменяет керамику
- Улучшенная обработка и надежность
- Большие размеры панелей для раскладки нескольких плат
- «Лучшие в своем классе» регулирование и рассеивание тепла

Области применения:

- Идеально подходит для диапазона X и ниже
- Усилители мощности, фильтры и соединители
- Антенны (спутниковое радио)
- Антенны GPS и портативных RFID-считывателей

Свойство	Единицы измерени я	Значение	Метод испытаний
Электрические свойства			
Dk			
@ 10 GHz	-	10.2	IPC TM-650 2.5.5.5
Коэффициент рассеяния			
@ 10 GHz	-	0.0021	IPC TM-650 2.5.5.5
Температурный коэффициент диэлектрика			
TCer @ 10 GHz (-40-150°C)	ppm/ºC	-368	IPC TM-650 2.5.5.5
Удельное поверхностное сопротивление			
C96/35/90	мΩ	6.85 x 10 8	IPC TM-650 2.5.17.1
E24/125	МΩ	6.7 x 10 8	IPC TM-650 2.5.17.1
Электрическая прочность	Volts/mil (kV/mm)	750 (29.5)	IPC TM-650 2.5.6.2
Пробой диэлектрика	kV	>45	IPC TM-650 2.5.6
Сопротивление дуги/Arc	500	>180	IPC TM-650 2.5.1
Resistance	sec	>180	IPC 11VI-050 2.5.1
Термические свойства			
Температура распада (Td)			
Начальная	°C	>500	IPC TM-650 2.4.24.6
5%	° C	>510	IPC TM-650 2.4.24.6
T260	min	>60	IPC TM-650 2.4.24.1
T288	min	>60	IPC TM-650 2.4.24.1
T300	min	>60	IPC TM-650 2.4.24.1
Термическое расширение (от 50° С до 150° С)			
CTE (X)	ppm/ºC	8	IPC TM-650 2.4.41
CTE (Y)	ppm/ºC	11	IPC TM-650 2.4.41
CTE (Z)	ppm/ºC	19	IPC TM-650 2.4.24
Физические свойства			
Водопоглощение	%	0.03	IPC TM-650 2.6.2.1
Плотность	g/cm3	3.22	ASTM D792 Method A
Термопроводность	W/mK	0.83	ASTM D5470
Воспламеняемость	class	V0	UL-94
Механические свойства			
Прочность на отрыв	lb/in (N/mm)	13(2.3)	IPC TM-650 2.4.8
Модуль Юнга/Young's Modulus	kpsi (GPa)	200 (1.38)	IPC TM-650 2.4.18.3

Модуль растяжения Tensile Modulus (Machine/Cross)	kpsi (MPa)	9.8/7.9(69/55)	IPC TM-650 2.4.4
Прочность на растяжение/Tensile Strength (Machine/Cross)	kpsi (MPa)	5.3/4.6(37/32)	IPC TM-650 2.4.18.3
Модуль сжатия/Compressive Modulus	kpsi	432	ASTM D-695
Модуль упругости при изгибе/ Flexural Modulus		0.15	ASTM D-3039

Приведенные выше результаты являются типичными свойствами и не должны использоваться в качестве спецификации. Приведенная выше информация не создает никаких явных или подразумеваемых гарантий. Свойства ламината могут различаться в зависимости от конструкции и применения.

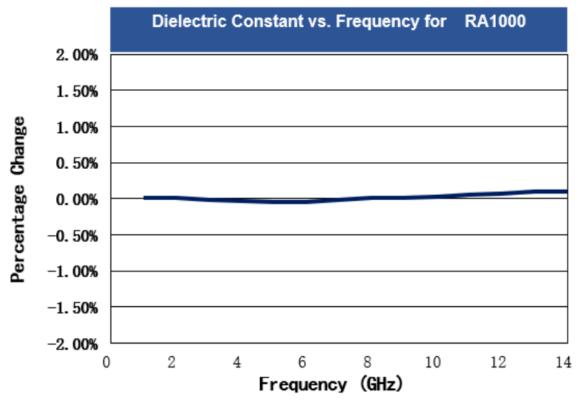


Рисунок 1 Демонстрирует стабильность диэлектрической постоянной по частоте. Стабильность диэлектрической проницаемости материала на разных частотах упрощает конструкцию и обеспечивает хороший перенос и масштабируемость конструкции.

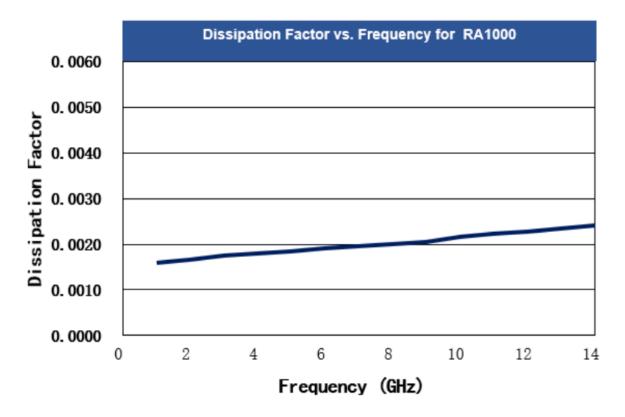


Рисунок 2 Демонстрирует стабильность коэффициента рассеяния по частоте. Эта характеристика доказывает стабильность материала на разных частотах и обеспечивает стабильную базу для высокочастотных применений, где целостность сигнала имеет решающее значение для общей производительности изделия.